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. [INTRODUCTION

Three-point finite-difference discretization has formaed the basis for
the overwhelming majority of numerical solutions of the equations of fluid
mechanics. For uniform meshes these procedures are typically second-order
accurate in the mesh wfdth h. A decrease in order of accuracy results for
nonuniform grids. A wide variety of temporal or marching integration schemes
have been developed and these include explicit (one step or two step methods)
or implicit procedures. For the latter, which generally have better stabil-
ity properties, the primary advantage of the three-point d|fferenc1ng is
that the resulting algebraic matrix system is of a block- tr|d|agonal form;
therefore, an efficient and well developed two-pass algorlthm(1) can be ap-

plied to invert the matrix operator.

Recently, a number of higher-order numericai methods have been proposed.
The obvious extension is to five-point differencing which leads to a fourth-
order accurate system. Unfortunately, for implicit integration the matrix
system is penta-diagonal and, therefore, the boundaries require special considera-
tion. In addition, the truncation error is considerably larger than that found

(2)

with the Spline and Hermite methods to be discussed. Graves has proposed a
five-point partial implicit procedure that simplifies the inversion process;
although this method is inconsistent in the transient it can be useful for time

asymptotic solutions.

A second class of collocation procedures which are also fourth-order accu-
rate for uniform meshes and which retain a 2x2 block-tridiagonal form for the
governing matrix system have recently been proposed. These Hermite or Spline
collocation techniques treat both the functional values and certain derivatives
as unknown at the three collocation points. These procedures generally result
in a somewhat lower truncation error than that found with a five-point func-
tional discretization and can be derived from appropriate Taylor series ex-

pansions (Hermite) or polynomial interpolation (Spline). In the former category

*The blocks are 2x2 for the fourth-order methods and 3x3 for the sixth-order
methods.



(%)

or so-called compact scheme ,

(3)

the Mehrstellung(5 formulation and Hermitian finite-difference development

we have the Pade approximation of Kreiss

of Peters(6) In the latter group are the spline collocation methods de-
(8)

scribed by Rubin and Graves(7) and Rubin and Khosla . In addition, a

spline-on-spline techniques is shown to result from a hybrid formulation.

The purpose of the present analysis is 1) to clarify the relationship
between the various Hermite developments, 2) to point out an apparent in-
consistency in the Peters' formulation, 3) to derive the Hermite tridiagonal
system for a nonuniform mesh, since all previous developments are for uniform
meshes, L) to extend the Hermite philosophy in order to develop a variable
mesh sixth-order tridiagonal procedure, 5) to briefly review the spline
interpolation method, develop this collocation procedure for several new
polynomial forms resulting in block-tridiagonal systems and to demonstrate
that, in fact, all of the results obtained by the Hermite Taylor series de-
velopment can be recovered by appropriate spline polynomial interpolation.
Comparative solutions are presented for the boundary layer on a flat plate,
boundary layers with uniform and variable mass transfer, the nonlinear
Burgers equation, and the viscous incompressible Navier-Stokes equations de-
scribing the flow in a driven cavity. Finally, 6) the polynomial interpola-
tion procedure is used to develop higher-order temporal integration schemes.
Solutions are obtained for the diffusion equation describing the impulsive

motion of a flat plate (Rayleigh problem).



. POLYNOMIAL SPLINE INTERPOLATION
Consider a mesh with nodal points xj such that

a=X_< X, < ve. < XN_< X1 = b

j+l/hj' Consider a func-

tion u(x) such that at the mesh points X;» we specify u(xj) = u,. For the

Define the mesh width h, = x. - x. ., with g, = o=h
J J j-1 J

purposes of the present analysis we define the polynomial spline S(xj;n,k) =
S(n,k), such that at the mesh points x, we prescribe $(x.;n,k) = u,. S(n,k)
is an nth order polynomial defined on ény interval [j-l,j] and in éhe set
Cn—k [a,b); k is defined as the deficiency of the polynomial spline; i.e., we
are considering an nth order polynomial having n-k continuous derivatives on

[a,b].

(1)

spline is a cubic polynomial of deficiency one or $(3,1). For a more detailed

The so-called simple spline has deficiency k=1. The familiar cubic

discussion of the properties of polynomial splines see, for example, Reference

(1.

Cubic splines have been widely used for curve fitting and interpolation
purposes, but on]y recently has spline collocation been adapted for the numeri-

(9-10) (7,8,11)

cal solution of ordinary and partial differential equations

These procedures have been applied to the equations of fluid mechanics by Rubin

(7)

and Graves and Rubin and Khosla . In these papers the spline collocation
technique is described for the basic cubic spline $(3,1) as well as a higher-
order accurate quintic spline of deficiency three $(5,3). The former has been
termed spline 2 and the latter spline 4. In addition, in Reference (8) it is
shown that the basic three-point finite-difference discretization formulae can

be obtained by considering the quadratic spline of zero deficiency, i.e., S(2,0).

The general spline interpolation procedure of References (7) and (8) can be
summarized as follows: an nth order polynomial is specified on the interval
[j-1,j1. The nt1 constants are related to the functional values uj-l’ uj, as

well as certain spline derivatives m, m,, M, M.. m., M. are the spline
. p J_I’ J’ J_l’ J J’ J p



derivative approximations to the functional derivatives u'(xj), u“(xj) respec-
tively. A similar procedure is considered on the interval [j,j+1]. Continuity
of derivatives is then specified at xj. This process results in two coupled
equations for m., Mj’ j=1, ...., N. Boundary conditions are required at j=0
and j=N+1. The system is closed by the governing differential equation for
u(xj), where all derivatives are replaced by their spline polynomial approxi-
mations m,, M,. The details of this procedure for spline 1, 2, 4 are given in
References (7) and (8) where a variety of explicit, implicit, two-step, relaxa-

tion and ADl methods are explored.

This spline procedure can be applied to other polynomials of other orders
and deficiencies and thereby a variety of systems can be derived. Since the
equations of fluid mechanics are second-order we restrict our attention to
polynomial splines defined solely by the functional values and the spline first
and second derivatives at the nodal points. In addition, only those polynomial
splines resulting in at most 3x3 block-tridiagonal matrix systems are considered.
In this regard, in addition to splines 1, 2 and 4, i.e., 5(2,0), S(3,1), s(5,3),
which have previously been described, the equations governing the spline deriva-
tives ms Mj for $(4,0) and S$(5,1) have been evaluated: All of the governing
systems for the various procedures are now specified. The spline polynomial

on [j-1,j] is also discussed. Consider the polynomial spline on [j-1,j]

at the nodes specify

]
c

3 S(xj;n,k)

(1)

(2)



In addition we require some or all of the following conditions:

$'cys k) = my (3a)

! . = b
S (xj,n,k) mj (3b)
S'.(x_j-l;n’k) = Mj"] (4a)
S“(xj;n,k) = MJ (4b)

where m., Mj are the spline derivative approximations of u'(x), u'"(x), re-

spectively. The interior point spline equations are as follows:

1. 5(2,0) or Spline 1 - Conditions (2) and either (3a) or (3b) are

specified for the constants A; in (M.

$(x;2,0) = ujt U (1-t) + (“j Tupg t hjmj) t(1-t), (5a)
where
t = (x—xJ_])/hj
~ 2
mJ = (uJ.+1 + (o -l)uj - ou _1)/(0(1+0)hj) (56)
. ~1 2
MJ = 2(uj+1/c - {(1+0 ) uj + uj-l)/(hj {(1+0)) (5¢)

2, 5(3,1) or Spline 2 and $(5,3) or Spline 4 - Conditions (2) and
either (3} or (4) determine the constants A; for ${3,1). For 5(5,3) we require




(2) and (3), but in lieu of (4), and in order to increase the accuracy of the

spline second-derivative approximation, we specify
M, =K, +G; M., =K _.+G, (6a)

where

y/6 (6b)

o
1

A{K,
J
and
3 2
A= (1+5”)/(ac (146} ") (6c)
in this formulation $(3,1) is recovered from ${5,3) when A = 0 so that Mj=Kj'
The polynomial spline is given by

3 2 3 2 ' 2
: = K, 1- . ) ] - K, ./6 -
$(x;5,3) K; -1 (1-t) hj/6 + Kjt hj/6+(UJ_1 -1 hJ/ ) (1-t)

+ (u. - K, h?/6) t+G. €5 (1-t)2/2 + G, t2(1—t)3/2 (7a)
Jj i i i-1
Recall that S(xj; 5,3) ~» S(xj; 3,1) as A >~ 0. In addition, we have for

both polynomial approximations

1

Kig # 2(1+0)KJ +g Kj+l = 6(uj+1/o - (140 )uj
(7b)

+ u, )/h%

Il R
Y/h, (7¢)

m, =h, (K. + 0.5Kk. )/3 + {(u. - u,
J j j-1 Jj j=1 ]



{

and

_ - / (7d)
LoomyE-hig (Kj + O.SKj+])/3 + (uj+1 uj),hj+]

Combining (7c) and (7d) we obtain

-1
LI + 2(1+0) m, + ey " 3(uj+1/c + uj(o g )

(7e)

Y/h,

- o u,
j=1 ]

As shown in References (7) the relations (7c), (7d) are genérally preferable

to (7e) as they provide & direct evaluation of mj and, therefore, m. can be

J
and (7e) for m, are third-order accurate spline representations of u'(x), the

eliminated in favor of K., uj Also for nonuniform meshes where (7c), (7d)

truncation error is increased if (7e) is applied. For spline 2 the governing
matrix system is tridiagonal for Mj. For spline h a 2x2 block-tridiagonal sys-

tem results.

3. s(4,0) - The A in {1) are evaluated from (2) and either (3) and
(4b) or (4) and (3b). Two distinct polynomial splines are generated. We

designate the former as 51(4,0) and the latter as SZ(A,O). The polynomial splines

in each case have been obtained. The important spline equations generated from

these polynomials are now presented.

A: Sl(h,O)
W2,
S'(x;4,0) = ujgy ¥ hym,_, t ¥ [6(uj'uj_1)-3hj(mj+mj_l) + —iaii t

N

3
- 8(ujmugp)-hy (Smj *3mp_g) + by Mot

cN -

h (8a)
- - - h
+ [3(u_i uj-l) hj (2 mj+mj-l) +— Mj] t



o+2 _ i j+? g i g -1
QLM = - + ( + m. - om,_.)
12 3hj+l 12(_1+c)hj_H o o i j-1 (8b)
u., .-u,
N o N
+ h2
j+1
2m . +m m 2
1420 _ MM 1 i+l o<1 ) 8
26 3h, Y12 (T¥oh; o+ = m - om_y) (8c)
u.-u,
- _J j-1
2
h’,
1
The continuity of H_j leads to
2 2 _ 2 _1____ 1+20 o-1 3
My ¥ 0407 mpxotm, = o h; 55— vy 5 (407 v,
(8d)
- 02(2+o) u, 1
J-1
For o=1 it can be shown that 51(4,0) is equivalent to $(5,3).
B:  S2(4,0)
S7(x; 4,0) = u. .+ [2(u.-u, - h.,m, + M.-M, t
(x ) Ui [ (UJ UJ—I) "t ( ] J_1)]
h% 2 ﬁ ( 3
oMt - [2(u.-u. - 2h. m, + MM, )] ¢t
2 J-1 [ (uJ J~1) N 2 JoJ-
MM, " (50)
+ .-u, - h, o m, o+ — AT Re t Ja
[ujmujq) = hyom, 6 i !
=EJ'_-E.1L]_ + E.L [Hl“’ M. o= ] M + 1+20 M. L] (9b)
m; h, 12 ¢ ' ol(ive) j+1 T Tve j-1



u.,.-u, h,
N L. N R j+1 2+g _oc
m b 1z o) M+ 2 Moy - T Myedd (9¢)

The continuity of m; leads to

02+c-1 . c3+h02+40+1 M.+ 1+0—02 M
120 j+1 120 j 12 j-1
‘ (9d)
u,
= ; ( J:‘ - 130 u, + u._])
h- J J
3

It is significant that for all of the polynomial splines considered thus far
the governing system consists of a tridiagonal form for m, or (Mj) and a pair
of algebraic relations for the other spline derivative Mj {or mj). Therefore,
at most a 2x2 block-tridiagonal system results. We shall now consider the
simple quintic spline S(5,1). For the first time the governing interior point
system enlarges to a 3x3 block-tridiagonal in terms of both of the spline de-
rivatives m_i and Mj' The simpler algebraic relations no longer appear and,
therefore, the final matrix system will be somewhat more complex. On the

other hand, increased order of accuracy is achieved.

k. S(5,1) - The six Ai in (1) are evaluated with all of the

conditions (2-4). Continuity of the third and fourth derivative leads to the

following interior point equations:

2
SR
S{x;5,1) = ujq * hJ. mo_qt¥ MJ._] t
h2
- - oM. 3
+ [10(uj uj_1) hj(hmj+6mj_1) + = (M 3Mj-1)] t
h2 (10a)
- - - i - 3] *
[15(uJ. ”j—1) hJ-(7mJ.+8mJ._1) + (ZMJ- 3Mj—1)] t
2
b 5
+ [6(uj-uj—l) - 3hj(mj+mj—1) + 3 (Mj—Mj—l)] t



u
3 3 _ 15 j+1 g -1 _ 3
o+ 8{145°) m, + 7o mi_q = j ( - = u; - o uj)
(10b)
3 . L2
+ oh, (MJ.+1 +5 (o%-1) M o Mj_l)
and
S 3o, 1y a0 Mk ae?
26 j+1 2 o ] 2 j-1 h% o3 o3 j-1
J
(10c)
2
1 4 g -1
+—[-—m . +6 m, + hm,_.]
hj g2 it 02 J j-1

Other polynomial splines can be considered, however, for polynomials of fifth
or lower order, the spline formulations presented herein appear to be the most
efficient. For higher-order splines, we require that the third or higher-order
spline derivatives be specified in the evaluation of the A, in (1). These
formulations are not discussed here, although the tridiagonal sixth-order ac-

curate system for Mj derivable from S(6,0) is presented later in this report.

For the polynomial spline formulations presented here, the truncation errors
T(hj) for the various spline derivatives m, and Mj are depicted in Table I. We

recall that

3
I

u' (xj) + T_(hJ.)

x
It

u”(xj) + T(hj)

For completeness the truncation errors T(hj) are also given for the five point
finite~difference discretization with a uniform grid. Note that although
these errors are fourth-order, they are somewhat larger than those obtained

with any of the fourth-order polynomial spline formulations.

For o=1 the minimum truncation errors of the fourth-order methods are ob-

tained with S(5,3) and S](h,O). 51(4,0) and 52(4,0) retain fourth-order accuracy for

10
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TABLE 1

TRUNCATION ERROR OF SPLINE DERIVATIVES

Uniform Mesh (o=1)

Nonuniform Mesh

m, M. m, M.
J J J J
2 2
2 2 . ah’, h
h . h™ (v - g-1 " _J Mo iv
s(2,0) 7;'(U )j 13 (u )J —gl'(u )j 5 hj (u )J 12 770 (u )J
2
L 2 . h
h v h iv * {o-1) 3 , iv 1+g” '] v
5(3,1) T30 (U )j 17 (u )J o5 N (u )j * 4o 7%'( )J
2
(1-0+c”) b , v
—180—— hJ (U )
4 4 7h3
h h i
5(5,3) T80 (UV)J 350 ( VI)J Same as (3,1) T80 (1+02) (0-1) (Uv)j
2 2
L o (o-1) 2_ vi
+ hj [§36'+ 1080 (76°-20+7)] (u )j
S](L’ O) hl* (uV) h (uVi) 02 (1+0’)2 hll' (UV) 0_(0_]) ‘ll?_ 3+50+3U ( V)
’ 180 j 360 j 1+0+02 i j 120 1+0+02 ]
L
+ 90 +1 Ohj ( Vl)
o2+ge1 120 ]
. 4 3, 4 h3
2 7 4, v h vi 3(a +1)=5(1+0+0”+0 L, v _ 2y v
s°(4,0) 360 h™ (u )J 550 (u )J 20 hj(u )j (0-1) (2+50+20¢°) Téa (u )j

L

h i
+ 1306212 + o(20%-0+2)] 7%5 (uv')j




= TABLE | (Concluded)
Uniform Mesh (o=1) Nonuniform Mesh
m, M. m, M,
J J J J
5 4
6 . 4 . 2 h- . 3, h,
h vii h vi o (o-1) 2.3 vi o(1+0”) 7 4 vi
S(5,1 , T . ————— (1+60+60 "+ ——
(5,1) Tohg (M )J 755 (U )J 51300 (1+60+60 +0”) —fm—1 7 (u') o 730 (u')
3 L.
o 6 , vii
e Ny ()
8(u,, . ~u, ) = {(u, ,-u. ) L
- pt. Finite-Diff : = -t MR- ok . B
5-p tn|t§=1| erence u T7h 30 (u )J
. 16(uJ+]+u _1-2uj) - (u.+2-2uj+u._2) Lh W
XX 12h2 90 ]
Hermite 6: o=1 ; m, =u + h6(uVii);/9450 s M, =u 4+ h6(uViii)./66360.
’ J X J ] XX J

*This is obtained from (7¢c) or (7d). |If evaluated from {7c) 24 in the denominator changes to

72.



mj even with a variable mesh. The other fourth-order polynomial splines lead
to third-order accurate formulas for mj with 6 # 1. S{(5,1) is sixth-order for
m; with o=1 and fifth order with o#1. Mj is fourth-order in both cases. A
sixth order formulation for Mj is discussed later in this paper. From Table 1
we see that even with h=1.0 there is a significant reduction in truncation
error with the higher-order methods. This is due to smaller numerical coef-

ficients in the error terms.

13



111, TAYLOR SERIES FORMULATION -
HERMITE COLLOCATION

1. Compact Formulation - As discussed previously, higher-order

finite-difference equations can be derived from Taylor series expansions. For
a uniform grid, fourth-order accuracy is achieved with a five point expansion
formula. The resulting system is penta-diagonal with implicit integration

(3)

procedures. Recently, Orszag and lsraeli have reported an idea due to

Kreiss in which a compact or Padé approximation transforms the penta-
diagonal system for the functional values at the nodes to a 3x3 block~-tridiagonal

system for the functional values and their derivatives at the nodes.

It has been observed(3) that with

m. = (u) , M. = (u ) ,

j x i j XX i

ptu. = (u..,-u.)/h Du, =
u; uJ.+1 uj 41 u; = (uj_uj-1)/hj s (11a)

0%, = 2(u.. /o - (1+s) u./o + u. )/({(1+5)h?) (11b)
i j+1 Jj j-1 i’

Du. = (u. /o + (6°=1) u./o - ou. ,)/(1+c)h.) (11c)
j J+ j -1 i’ ¢

for a uniform mesh, the five=point difference discretization is of the form

2
h™ .+ -
m, = (1 -—0D T
2
_ _hT - + -
MJ. (1-370D) (DDuJ.)
The truncation errors are given in Table |I. These expressions can be re-

written with a Padé or compact approximation such that

14



o (uj+‘-uj_1)/2h
J h2 + -
1+-—E—DD
D+D—uj
M., =
J hz + -
1+-l—z-DD
or
h2 4 -
(1 + & 0D ) m; = (uj+]—uj_1)/2h
2
h® . - S
(1 + TE-D D) Mj = DD uj

This results in a fourth-order block-tridiagonal interior point system for

the function uj and the derivatives mj, Mj'

with the differential equation and appropriate boundary conditions.

As before the system is closed

(3)

The system (13) is

The system (13) has appeared in a number of places and is termed com-

(5) (6)

pact(h), Mehrstellung and Hermitian differencing.
fourth-order with a somewhat smaller truncation error than the five-point dif-

ference equations.

The Equations (13) have previously been observed in the spline analysis pre-

sented herein. For a uniform mesh, (13a) is equivalent to (7e) in $(3,1) and
(13b) corresponds to (9d) in 52(4,0). Therefore, this compact formulation is
The

derivation (13) does not provide the simpler expressions (7c,7d)} or (9b,9¢c) re-

the result of two different polynomial spline formulations for mj, M..

lating the derivatives m o Mj' These expressions are particularly useful in
consideration of boundary conditions and in order to eliminate m, and, thus,
reduce the size of the governing matrix system. Moreover, (7e) and (9d) have
been obtained for nonuniform meshes. An extension to variable grids of the com-
pact formulation could be quite laborious and will not be considered here. On
the other hand, the 'compact' formulae (13) can be derived directly with a

three-point Hermitian collocation procedure. It is the approach that will be

discussed further.

(12a)

(12b)

(13a)

(13b)

15



2. Hermitian Collocation - Consider the finite three-point Taylor

series expansions

_ 2 3 4
Uipq = uj+hj+1ux + hj+1uxx/2 + hj+1”kxx/6 + hj+1uxxxx/2h (1ba)
2 3 4
u, , =u.-h.u +hSu /2 -h7u_ /6 + h. u /24 (14b)
j-1 J Jx J xx J xxx Jj o xxxx
Let m. =u , M, =u
J x> ] XX

A. Hermite 1 - with the operators {11) Equations (14) can be

rewritten in the form

3
|

_ _ * 2 fe)
= (Uj uj-l)/hj + (hj/z) (1 (hj/3)0 + (hj/TZ)D ]Mj (15a)

3
]

* 2 o
(uj+1—uj)/hj+] - (hj+]/2) [1—(hj+1/3)D - (hj+1/12)D ]Mj (15b)

These equations are identical with (9b) and (9¢). Eliminating mj the tri-
diagonal relation (9d) is recovered. Therefore, Hermite 1 is identical to
32(4,0). The tridiagonal Equation (9d represents the extension to variable
meshes of the compact formula (13b), since (9d) » (13b) for o = 1. Signifi-
cantly, (9d) can be derived with a compact operator directly from three-
point finite-difference expansion. The cumbersome Padé approximation which
is not easily extendable to nonunifdrm meshes or higher order schemes is a-
voided. This represents an alternate derivation of the polynomial spline

equations.

B. Hermite 2 - If we consider finite three-point Taylor series
expansions
m =m, +h, ,u_+ h2 u /2 + h3 u /6 (16a)
j+1 j j+17xx J+1 xxx J+H1 xxxx
m. . =m - hu _ +h2u /2 - hiu /6 (16b)
i-1 J j xx J xxx § xxxx

16



and combine with (14) to eliminate u (u = Doqj). we recover the Equa-

xXxXxx’ XXX 1

tions (8). Therefore, Hermite 2 is identical with S (4,0). The tridiagonal
form (8d) is a nonuniform mesh extension of the "compact' formula (13a). This
relation is fourth-order accurate for both uniform and variable meshes, see

Table I.

C. Hermite 3 - If in (16) we eliminate u . and replace Uyxxx PY
DOMj we obtain .
— 2— -
Mipq ¥ 2(0+0)M, + oM (= (3/h;) [m; /o + (0"-1)m;/c - om; ] (7

The block-tridiagonal system obtained with (8d) from Hermite 2 and (17) is
termed Hermite 3. This is equivalent to what has been called sp]ine—on-splines(I).
Since u is treated differently in obtaining the equations for m,, M. this

XXXX J J

formulation does not result from a single polynomial spline interpolation.

D. Hermite 4 - If we consider the block-tridiagonal system ob-
tained with (8d) from Hermite 2 and (9d) from Hermite 1 for m; Mj’ respectively,
we have what is termed Hermite 4. Once again this cannot be derived from a
single polynomial spline and for ¢ = 1 reduces to (13) or what has been termed

the Pade or compact or Mehrstellung formulation.

E. Hermite 6 - Uniform mesh. Consider the finite three-point

Taylor series expansions

o h2 iv hh vi
D uJ = MJ + Iz U + 360 u
2
o, _ v h Vi
D Mj = u + 77 ¢
2 4
* h™ v h vi
D mj = Mj + 2 u + 150 Y
Eliminating u'Y and u¥' we obtain
Mo+ 8. - M. = 18{2 (u. . -2u+u, )/h® - (m...-m. .)/2h} (18a)
Jj+ J i 3 i+ T g Jj+1t -1

From the finite Taylor series

17



we obtain

7mj+1 + 16mj + 7m)._1 = 15(uj+1—uj_‘)/h + h(Mj+1—MJ._1) (18b)
For a variable mesh a similar procedure applies and we obtain
2
g 38c-11-11¢ 1 1 1+150
- M, + BT e M., - M. = —p [ u,
18 "j-1 360 j  18c i+ 6h§ 03(l+0) j+1
. dxise 0(15+0)) - a(o*15) ] (18¢)
03(]+0) 1+0 j 1+o j-1
2
1 4+50 (o~1) (1506°-11k4g+15) o (5+4o)
-— =, - m, + m, .1
hj 902(1+c) j+ 5402 j9live) T
2
lﬂil%%:lgg_ Mgy ¥ [g§-+ Zi%%ll (8" +180°+1302-75+1)] m;
L 1ho®+100-10 6 ((o"-o=1) | _ (01) (140)? (1+0”)
5 Mi-1=" h. 2 j+1 2 j

(18d)

2,2 hy 3
+ ¢“ (o +o~1) Uj_1] - 7;-[(c+1)(0'2) Mj+l - 3(o-1) (g+1) Mj

1

+ (20-1) (o+1) Mj_]

The block-tridiagonal system (18a), (18b) for Mj’ m, is termed Hermite 6. This
is a sixth-order accurate formulation when combined with the differential equa-
tion and appropriate boundary conditions. Simple relationships such as (7c¢)
between m, and Mi no longer exist and once again these formulae are not deriv-
able from a single polynomial spline. (18b) is the uniform mesh (o=1) analogue
of the form (10b) for mj found in S(5,1) for a variable mesh. Although we have
not carried out the details, based on previous experience, we expect that (18¢)
for a nonuniform mesh is derivable from some form of $(6,0). The truncation

errors for Hermite 6 (18a,18b) are given in Table 1.

18



Therefore, it is possible to derive the polynomial spline results of Sec-
tion Il with an Hermitian discretization procedure. Moreover, hybrid systems,
which represent approximations resulting from multiple spline formulations,
can also be conceived. One of these hybrid systems is the variable mesh ex-
tension of the so-called Pade or compact differencing scheme. The truncation
errors for all possible systems can be obtained from Table |. Finally, the
tybrid systems result in a block-tridiagonal form of mj, Mj' The simpler re-
lations relating m directly to Mj found in the polynomial spline formulations
are not obtained. This concept has been extended to a sixth-order system in

Hermite 6. Higher-order approximations have not been considered.

(6)

Peters has presented an Hermitian differencing procedure for uniform meshes

3. Hermitian Polynomial Interpolation - Peters Method

- Recently,

which also leads to the "compact'' or Hermite 4 3x3 block-tridiagonal system
for uj, mj and Mj' Peters has then carried out a reduction process that ap-
pears most attractive as a single system for uj results; however, it can be

shown that the resulting system is inconsistent with the differential equa-

tion and as such results in an attendant loss of accuracy. A brief description

follows.

Consider the interpolation polynomial S{(x) on the three-point interval
[j-1, j+1].

S(x) = u,

2 2 2
1 (t™+t)/2 + uj (1-t7) + U (t°-t)/2

+ at (1—t2) + Btz (l-tz)

as before t = (x-xj)/h. a and B are two free parameters which are assumed con-

stant on [j-1, j+1].

) n
With m, = S . d. M, =25 . i
i m, (xJ) an M, (gJ) we obtain

Lo

mj =D u-i + a/h, mj_'h1 = hD

°uj + D"uj - 2(a+B8) /h

o %
m;_q=-hD"u; + D'u, 2(a-g)/h

19
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and

o - a0, _ 2
Mj = Dou; + 2B, My, = Dou, (6a+108)/h
(20)
M. . =0%. + (6a-108)/h2
J-1 J
A. Eliminating a and 8 from (19) we obtain
=6y, . (21
LI + hmj + Mg 6D uj (21a)
This is precisely (13a) or (7e).
B. Eliminating o and B from (20) we obtain
o)
M. + 10M., + M, = 12D u, 21b
J+1 Jj j-1 J (21b)
This is precisely (13b) or (9d) and, therefore, with {21a) and {21b) the com-
pact or Hermite 4 discretization is recovered.
Peters has not considered the tridiagonal Equations (21) but instead has
evaluated the differential equation under consideration at the three points
Xi 1 Xj’ Xj+1‘ The derivative approximations at these points are given by
(19) and (20). This leads to three equations for the five unknowns o, B,
uj_], uj, uj+1. o and B are eliminated and a single tridiagonal system for
u, results.
J
However, o and B can be determined independently from (19) and (20) re-
spectively, and these results effectively imply different polynomials S(x)
leading to the tridiagonal system (21). When a and B are evaluated from Peters
tridiagonal equations the resulting values are inconsistent with those leading
to (21a) and (21b). This can be shown in the following simple example.
Consider the differential equation
u,+u_=0 (22)

X XX

Using (19) and (20) and evaluating (22) at j-1, j, j+1 following Peters, we

20



obtain for h=1
(0*+0°) u+ 28 +a=0

(20°+0™) uj - 128 - 8 =0

A

D"uj - 88 + La =0
From these equations we find
8a = - (5D +4D°) u;

Substituting this expression into (19) we obtain for m_i

It is clear that we do not recover even the leading term in the expansion for

u'(x). A similar result is found for Mj'
Numerical! experiments with Burgers equation

1 =
u, + (u 2) u = vu
have shown this inconsistency. Both the viscosity (v) and convection (u - %0
coefficients are effectively modified. For large values of v the effect of
the inconsistency is diminished. For small v values, diagonal dominance of the
resulting matrix system is lost. Therefore, we believe that the reliability

of the Peters reduction procedure is questionable.
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1V. EXAMPLES

1. Similar Boundary Layer: Zero Mass Transfer - As a first test of the

various polynomial spline or Hermite formulations considered in the previous
sections, solutions have been obtained for the similarity equations governing

(12)

laminar boundary layer behavior .

119 ] |2 ]
u + fu +8(1-F ) =0, u=uln), f =u

Primes denote differentiation with respect to n, where n = y(Re/ZX)%; Re is
the Reynolds number; y is measured normal to the surface and x along the sur-
face. The respective velocities are v and u, We approximate the derivatives
u;, u?, f' with mj, Mj and Hj, respectively, so that the governing Equations
(23) become

_2
M. + f,. m, + 1-m.) = 0
J J J B( J)

m. = u,
Jo

The additional equations for mj, Mj’ aj are given in Sections Il and Il for
each of the polynomial interpolation procedures. The systems are closed with
the boundary conditions at the surface y=0 (j=1) and the edge of the boundary

layer y=y, or j=N.

N
Equations (23, 24), the spline formulas typified by (8b) or (8c), or from the

The additional boundary conditions on m1, mN, M], M, are obtained from the

Hermite expansions {14) and (15). The boundary conditions used here have
truncation errors that parallel those for the interior systems shown on Table
. For spline 2 and spline 4, boundary conditions have been discussed in

greater detail in References (7, 8); however, only third-order conditions were

used for the spline 4 calculations so that the present results are somewhat more

accurate.

The results of the polynomial spline calculations are presented in Table 2

for a variety of uniform and variable meshes. The notation 0=1.5/1 means that

22
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TABLE 2. SIMILAR BOUNDARY LAYER SOLUTION: '(0)

B=0
i
Tuax | hz | o | SPLINE 2 | S%4,0) |HERMITE 4 SPLINE 4 |HERMITE 6
S@3,1) (COMPACT) |  S(5,3)
6.0 |0. | 1.0 0468634 |0.469597 |0.469600 |0.469600 |0.469600
20.0 | 1.0 | 10 |0475357 |0.479359 |0.473602 |0.467960 |0.469690
16.078| 0.1 |15, |0.464325 (0471666 [———="10.470025 [~
16.063 | 0.05| 1.8, |0462008 0.469926 ————10.468885 ————_
) (12)
§(0) =0.469600 (ROSENHEAD )
B=1 _
6.0 | 0.1 |1.0|1.23227 |[1.23260 |1.23258 |i.23259 |1.23259
20.0 | 1.0 | 1.0|1.20612 |1.20863 [1.21260 [1.21863 |1.23242
9.448(.001 |18, | 1.23604 | 1.23501 ————"1.23208 ———="

£° (0) =1.23259 (ROSENHEAD''?)



h, = min{hj, 1}, and that o=1.5 for hj < 1. The remarkable accuracy of
Hermite 6 with the uniform mesh h=1.0 is noteworthy. It is apparent that
significant improvements in accuracy are achieved by considering higher-

order polynomial splines.

2. Similar Boundary Layer: Mass Transfer - In order to carry out more

stringent tests of the polynomial methods, boundary layers with surface mass

transfer are considered. In this section, similarity solutions corresponding .

1

? are evaluated; in the following section,

to mass transfer of the type VS vox
uniform injection and suction is specified; i.e., VS n constant so that the
boundary layer behavior is non-similar, The subscript s denotes the surface
values. With large injection it is possible to blow the boundary layer off
of the surface, and with large suction the boundary layer becomes very thin
and the shear stresses become quite large. Therefore, these boundary layer
profiles are more difficult to approximate numerically, and provide more

exacting tests of the spline and Hermite collocation procedures.

The equations governing the similar boundary layer with mass transfer are
(23 - 24). The only change is in the boundary conditions (25) for f1, so that

now fl = K, where K < 0 for injection and K > 0 for suction.

The results of these calculations are shown on Table 3 and Figures (1)
and (2). The figures show velocity profiles for suction and injection, re-
spectively. The flat plate Blasius profile is also included in order to em-
phasize the extreme thinning of the boundary layer with suction and the blow-
off obtained with injection. The polynomial sotutions shown on the figures
are in excellent agreement with the numerically ”exact”*values of Emmons and
Leigh(13). These profiles are coincident with the polynomial solutions ob-
tained with splireh or Hermite 6 and, therefore, are not specifically included
on the figures. The finite-difference results are not as accurate and exhibit

an erroneous overshoot for the suction case (Figure 1). For the suction profile

only two points lie with the boundary layer. More exact comparisons are shown

#"Exact'' here means six-decimal place accuracy.
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TABLE 3. f"(0) - SIMILAR BOUNDARY LAYER WITH NON-UNIFORM
MASS TRANSFER

I
h | o K | FED [SPLINE 4 |HERMITE 6 EXACT [Ny /N |
0.1 | 1.0 0.5 07394 07394 0.7394 | 35/81
0.1 |15/ | 05 07842 0.7406 | 7721 |
1.0 | 1.0 | 0.5 07992 0.7545 | 3/21
0.1 |15/ | 10.0 |7.8203 6.9817 7.1397 | 2/21
0.15 | 1.5/, | 10.0 |7.6869| 6.8703 1721 |
0.3 | 1.0 | 10.0 |5.2677| 7.2178 | 7.0425 1721 |
0.1 | 1.0 |-0.5 |0.2326|0.2326 0.2326 | 48/8|
0.1 |15/ |-05 |0.2317|0.2321 9/21
1.0 | 1.0 |-05 |0.2514| 0.2253 5/21 |
0.1 |15/, |-1.2 |0.0041| 0.0046 0.0047| 12/2I
1.0 | 1.0 |- 1.2 |0.0009| 0.0045 |0.0048 9/21
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on Table 3. NG denotes the number of grid points within the boundary layer.
A variety of results for uniform and nonuniform grids are presented. The
polynomial solutions retain a high degree of accuracy for both the high
shear suction and near separated injection cases. It is generally found
that for.equal accuracy, spline 4 requires one-quarter the number of mesh
points required in finite-difference calculations; e.g., with K= 0.5,

f”(O) = 0.7394 (81 points with finite-difference) and f“(O) = 0.7392 (21
points with spline 4). Similar behavior is found with Burgers equation and

the cavity solutions to be discussed in the following sections.

3. Non-Similar Boundary Layer: Uniform Mass Transfer - With uniform

injection or suction V_ = constant, and the follawing coordinate transforma-

(12)

tion is applied

Vs (xRe/Z)’lr ; n=y (Re/ZX)J‘r

oy
]

(ZX/Re)% f(g,n); u=yp =f

v y n

. |
v= - = (2Rex) ? (f + gfg - nfn)
The governing boundary layer equations become

Yo + fun + E(fE u, - uug) =0 (26a)

and the boundary conditions are,

£
w

at n=0 f=+¢&, u=0, and

(26b)

lim n » =, u -1

The spline equations are

£,
_ i 2
Mg * (v & (fE)'.J.)mij =7 (UE)U

*The positive sign denotes suction and the negative sign denotes injection.
VS is positive in both cases.
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where (fg) = (f,, - f. J.)/AE;, and with quasi-linearization
. !

L § I Y
2
2, * _oxt 2
(ugzj-— (zuijuTj Ui ui_1’j)/A£

lteration is used for the nonlinear term and the asterisk denotes the values
from the previous iteration. The equation for ﬁj is the same as given by (24).
Once again the spline derivative boundary conditions are obtained from the

- governing Equation (26) and the derivative relations obtained with the poly-
nomial interpolation of Sections Il and 111.

(12)

For £ > > 1, with suction the classical asymptotic suction profile

will be recovered, i.e.

TRG exp(-Vs y Re)

or

u~n 1 - exp(-2ng)

(14)

layer will separate at a finite £ location. This question will be addressed

For injection, there has been some question as to whether the boundary

in the discussion of results which follows.

The solutions are shown on Tables L4 and 5 and Figures (3) through (6).
With many mesh points all of the methods, including finite-difference, work
quite well, see Figures (3a) and (5a). As the mesh size is increased the
finite~difference solutions begin to deviate from the polynomial results.
This is shown on Figures (3b), (3c) and (5b) but more dramatically on Figures
(4) and (6). The surface shear stress, f“(E,O), obtained with the finite-
difference method becomes very inaccurate for coarse meshes. For the suction

calculation, the asymptotic solution (27) gives for £ > > 1
[}
f (0) = 2¢
" n
Therefore, at £ = 1.0, f (0) ¥ 2. The spline 4 results very closely approximate
this value; these solutions are in all cases more accurate than the Hermite 4

results. Table 4 presents the shear values for both the coarse and fine grids.

Also shown is the velocity one grid point away from the surface. The asymptotic

29
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TABLE 4: f"(0) NON-SIMILAR BOUNDARY LAYER WITH UNIFORM

SUCTION

§ h|o|N F. D. SPLINE 4 HERMITE 4
ul€,a9)f"(0,€) |ul,aq) (0, &) |ul&, a9) £1(O, &) |

0.09 [1.0/1.0| Il |0.5321 |0.6798!0.5218 |0.5829 [05228 |0.5874
0.49 0.7776 |1.0539 |0.7357 |1 .1769 |0.7369|1.1860
0.79 0.9185 |1.3270|0.6249 |1 .6775 [0.8235|1.7202
0.95 0.9833 | 1.4580{0.8536 |1.9751 {0.8491 [2.0599 -
1.0 1.0022|1.4570|0.6600/2.0745 0.8544 | 2.1777
0.09 |0.1]1.5]|21 |0.0628|0.6340/0.0576 0.5817 |0.0577/0.5823
0.49 0.1253 | 1.3119 |0.1119 | 1.1748 |0.1120 | 1.1762
0.79 0.1761 | 1.8898/0.1556 | 1.6822 |0.1557 | 1.6828
0.95 0.2038(2.2151 [0.1792 | 1.9678|0.1792 | 1.9675
1.0 0.2125 2.3184 |0.1866 | 2.0587|0.1866 /2.0581

| | | | |
0.09 O.I; 1.0/ 6l 0.0575}0.58070.05750.58070.057550.5807
0.49 | 0.097¢ 1.0l67 |0.1122 | 1.1781 |0. 1122 | 1.1780
0.79 | 0.1566| 1.6804/0. 1563, 1.6902 O.|563} 1.6900
0.95 | 0.1806| 1.9629|0. 1802 | 1.9790 0.1817 : 1.9970
1.0 | 0.1882|2.0526 0. l877j 2.07090.18772.0707 |




(£

TABLE 5. f"(0) NON-SIMILAR BOUNDARY LAYER WITH UNIFORM .

BLOWING
€ |h o|N E.D. __HERMITE4 | SPLINE 4
B ul€, A7) £(0,€) ul,aq) £(0,€)|ul€, a9)] £°(0,€) |
1 0.09 {1.01.0 3I o.4004iio.4|0| 10.3859 0.3587 |0.3865(0.3618
0.29 | | 0.2429 0.1866|0.2192 0.1619 |0.2185 |0.1585 |
0.59 | 0.0367|-.0065 0.0128 |0.0070/0.0127 |0.0069 |
0.79 | 1.7 xl078.8x10°®
0.84
0.09 |0.1/1.03 81|0.0364 |0.3610 |0.0364 0.3607 [0.0364 |0.3607
0.29 0.0172 |0.1672 |0.0172 |0.1670 |0.0172 |0.1670
0.59 6.8x10 || 63x10 | 67%10 | 6.4x10°|6.7xI0 | 64x10 >
0.79 4.3x10 2 3.9x108 55x10°! 5.1x10° 55x10 2| 5.4x 10°8
0.84 2 7x10" 2.4x10' 44x10™"| 4.0x16°4.4x10"| 4.0x10"°
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solution (27) gives at £ = 1.0

u(0.1) = 0.1812

or

u(1.0) 0.8647

Once again the spline 4 results are best.

Detailed injection solutions are shown on Table 5. For the very fine grid,

there was no indication of separation as inferred in Reference (14). This

was true for all claculations. The shear decreased but never vanished. For the

coarser grid the finite~difference solution did lead to a separation point,
but the polynomial solutions still did not separate. This behavior is also
depicted on Figure (6b). The conclusion obtained from these results would

appear to be that separation does not occur with uniform injection; instead,

the shear decreases asymptotically to zero for large values of .

L., Burgers Equation - Since many results have been obtained in earlier

(4,7,8)

studies of the nonlinear Burgers equation, only a brief discussion of
the higher-order solutions is presented here. The governing differential and

spline equations are, respectively,

u, + (u - 0.5) u, = vu

and

(u'j+1 - uM/at + (W7 - 0.5) m, = uM,
J J J J

The boundary conditions are

The boundary conditions on ms Mj are obtained from (28) and/or the spline
derivative relations. More details on these boundary conditions are given in
References (4), (7) and (8).

Typical solutions are shown on Tables 6 and 7 for v = 1/8 and v = 1/16,

respectively. [n both cases the fourth-order methods represent an improvement
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TABLE 6.
SOLUTION OF BURGERS EQUATION, »=1/8, o=1.0,
3l EQUALLY SPACED POINTS

: !
;x\“| F 0.

€y

SPLINE 2 HERMITE 4 SPLINE 4 EXACT.
0 0500005000 | 0.5000 |0.5000 | 0.5000
-0.2 |0.6999 | 0.6860 = 06903 | 0.6900 | 0.6900
'-0.4 [0.8447|0.8290 | 0.8322 | 08322 | 08320
' -0.6 /09269 | 09160 | 09169 | 0.8170 | 09170
-0.8 |0.9673| 0.9620 | 0.9608 | 0.9609 ' 0.9610 |
|-1.0 |0.9857  0.9830 | 09820 | 0.9820 | 0.9820
-1.2 |0.9938/ 0.9930 | 0.9918 | 0.9918 | 0.9920
- 1.4 |0.9973| 0.9970 | 0.9963 | 0.9963 | 0.9960
- 1.6 |0.9988| 09990 | 0.9983 | 0.9983 | 0.9980
- 1.8 |0.9995| 0.9990 | 0.9993 | 0.9993 | 0.9990




h

TABLE 7.
SOLUTION OF BURGERS EQUATION, v=V/16, o =10

|19 EQUALLY SPACED POINTS
w~Y | ED. |SPLINE 2 |HERMITE 4| SPLINE 4 | EXACT
0 105000 05000 | 0.5000 | 0.5000 |0.5000
-0.2 |09000| 0.8231 | 0.8383 | 0.8356 |0.8320
-0.4 |09878| 09641 | 0.9593 | 0.9617 |0.9608
- 0.6 |0.9986| 0.9952 | 09922 | 0.9916 |0.9918
-0.8 |0.9998| 0.9995 | 0.9981 | 0.9982 |0.9983
-1.0 1.0 [ 0.9999 | 0.9997 | 0.9996 |0.9997
-1.2 | 1.0 ] 1.0 0.9999 | 0.9999 |0.9999




over the second-order finite-difference and mixed-order spline 2 procedures;
however, as with the previous examples, the spline 4 solutions are most ac-
curate., Similar results were obtained with nonuniform grids(s). As a general
rule of thumb, it was found that the spline 4 solutions required one-quarter the
number of mesh points of the finite-difference calculations in order to achieve
equal accuracy; (e.g., with v = 1/8 and x = - 0.4, u = 0.8357 with 101 points
(finite-difference) and u = 0.8356 with 27 poincs (spline 4)). This fact was
discussed earlier for the similar suction boundary layer and will be demonstrated

in more detail in the following section describing the flow in a driven cavity.

5. Incompressible Flow in a Cavity - As a final test problem the laminar

incompressible flow in a driven cavity is considered. This problem has been
studied extensively by many investigators, see Reference (15). The governing

equations in terms of a vorticity and stream-function system are:

wxx + ¢YY =z (29)
-
Ty *ug, v = gg (t, + i;yy) (30)
where y is the-stream function, ¢ is the vorticity; u = wy and v = - wx are the

velocities in the x- and y-directions, respectively. The boundary conditions

and geometry are shown in Figure (7).

Solutions of (30) are obtained with a predictor-corrector procedure describ-
ed in References (16)- (17). For the Poisson Equation (29) a modified version
of Buneman's direct solver(18) is used. The spline approximations of (29, 30)

in non-divergence form are

Y -
Lij + M. =z

ij ij
n+1 n
.. - .. + +
AL u,, (m® )n 1 +v,. (2% )n I (31)
At ij ij ij ij
n+1

_ 1 z
[Lij + Mij]

where lij and Lij denote the polynomial approximations of ( )y and ( )YY
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respectively. The superscripts denote the specific function. The spline
boundary conditions are obtained by satisfying (31) at the walls. The de-
tails of this procedure have been previously described in References (4), (7)
and (8).

Solutions have been obtained for a square, cavity with Re = 100. A 17x17
point mesh has been considered. The results are shown in Tables 8 through 12
and Figure (8). Table 8 compares the Hermite 4 and spline 4 solutions with
results obtained in previous studies(7). The maximum value of the stream func-
tion, the corner point velocity u and the vorticity at the mid-point of the
upper moving wall are presented. It is significant that with a 17x17 mesh
the spline & solutions parallel those obtained with a 57x57 point finite-
difference discretization. Moreover, the spline 4 results are very close to
the extrapolated values as projected for the non-divergence equations. This
behavior carries over to the velocity profile shown on Figure (8). The com-

plete computer solutions are given on Tables (9) through (12).
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TABLE 8. COMPARISON OF RESULTS FOR THE SQUARE

CAVITY, Re =100

Rumbog

Having Surlace

Cafeufution . .o,
Method of Puints L;:;;;c;:;"l

Spline 2 IS x 15 7.1376
Spline 2 29 x 29 6.6876
E}trapolated Spline 6.5376
Finite Difference 15 x 1§ 8.9160
Finite Diffcrence 57 x 57 6.6960

Extrapolated ]
Finite Diffecrence 6.5480
Finite Difference 17 x 17 7.3755
Finite Differcnce * 65 x 65 6.6091
HERMITE 4 1I5x 15 6.927
SPLINE 4 17x 17 6.6104

* Divergence Form

(a) Vorticity at the center of the moving surface.
Calculaticn Number Max imum
Method of Points Stream Function
Spline 2 15 x 1S -.10529
Spline 2 29 x 29 -.10432
Extrapolated Spline ~.10399
Finite Difference 15 x 15 -.08742
Finite Diffcrence 57 x 57 ~.10128
Extrapolated .
Finite Diffcrence -.10220
Finite Diffcrence ® 17 x 17 -.09867
Finite Diffcrence ® 65 x 65 -.10318
HERMITE 4 IS5 x 15 -. 1014
SPLINE 4 17 x 17 -.1023

® Divergence Form

(b) Maximum stream function.

Calculation Numbor u Velocity

Mcthod of Points at Corper*
“Spline 9 15 x 15 -.13230
. Spline 2 29 x 29 -.10036
Extrapolated Spline ~.08971
Finite Difference 1S x 158 «05730
Finite Differecnce 57 x 57 -.06515

Extrapolated
Finite Difference -.07438
Finite Difference **

{(Interpolated) 17 x 17 .02079
Finite Diffcerenco **

(tuterpataced) 65 x 6S - 47560
HERMITE 4 15 x 15 -. 18
SPLINE 4 17 x 17 -.086
*¢ pDivergence Form

.

(c) Corner point u velocity.

kg



0g

TABLE 9

NON-DIVERGENCE FORM SPLINE 4 CALCULATED STREAM FUNCTION
FOR 17 X |7 POINTS, Re =100 '
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TABLE 10

NON-DIVERGENCE FORM SPLINE 4 CALCULATED u-VELOCITY
FOR 17 X 17 POINTS, Re =100
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TABLE 11

NON-DIVERGENCE FORM SPLINE 4 CALCULATED V-VELOCITY
FOR 17 X I7 POINTS, Re =100
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2

NON -DIVERGENCE FORM SPLINE 4 CALCULATED VORTICITY

FOR 17 X I7 POINTS, Re =100
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.8750 [-1,900] L7421} 1.9733) 2.7138) 3.1692| 3.64997 ] 3,7283 | 3.9466 46,1378 ] 0.3647 | 4.6368 ) 5.0262] S,7403| 6.1700}1 .5152
9375 | 3.0209| 7.7309| 8,2772] B.0023| Teahnd| 6.0A98 | 6,3BnT [ 5.9522 | 5.6486 | 5.4494 [ S.4888 | 5.7386] 6.70641| B.2484| 8,2117
1.0 40,0252 [27.1943 [18.71607[13.,8511[10.5300 | B.b614 ] 746909 | 66106 | 6.1558 | 6,2505 | 648945 | 8,5219[10.9989{17.9490 |28.9730




V. HIGHER-ORDER TEMPORAL INTEGRATION

From the preceding sections it is evident that higher-order spatial ac-
curacy can be achieved by using polynomial interpolation. However, in these
calculations, the temporal accuracy is quite low; either first-order for a
fully implicit scheme or second-order for the .Crank-Nicholson method. In
order to achieve over all fourth or higher-order accuracy, the temporal ac-
curacy should also be improved. Various multi-step methods in conjunction
with 5 point finite-differences for space dimensions have been proposed in

(19,20)‘

the literature These ‘schemes are explicit and have severe stability

restriction on the allowable time-step.

Some of these explicit methods can be directly extended for the present
spline collocation procedures. However, there are many drawbacks of such
highef-order time integration schemes when applied in conjunction with the
spatial spline procedures; e.g., (1) the stability restriction on the allowable
time-step is even more restrictive than with finite-differences; (2) due to
the large number of spline curve fits required at each time step, the overall
computational times increase. For example, for a fourth-order Runge-Kutta
method, at Teast four curve fits of each function per time~step must be
evaluated and stored. In view of these restrictions only implicit higher-
order methods are investigated in the present study. Some of the resulting
methods can be found in the literature on numerical studies of ordinary dif-

1
ferential equations(2 ).
(22)

One such formulation has been recently described by
Watanabe and Flood and leads to an overall fourth-order unconditionally
stable scheme. For the following analysis polynomial interpolation is used to
derive several time integration procedures of third and fourth-order accuracy.
Although no attempt has been made here to extend the procedure to higher-orders,
the method of derivation is quite general. The utility of these higher-order
temporal methods is counterbalanced by their sensitivity to initial conditions,

possible ''stability" limitations and increased computer time and storage.

A. Polynomial Interpolation

1) Crank-Nicholson Scheme - The following interpolation polynomial S$(t),

on the interval ti 2tst, satisfies the three conditions given earlier as
(2) and (3b).
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s(x) = u.T o+ Uy (1-1) + (uy-u;_ -4t mi) t {1-1)

where

t-t
i-1 du
T = s m, = (&)
At i at t=t,

and

At = t; -t 4
Differentiating, we obtain

‘ )

At m,_, =S (t=0) = 2(ui - u_y) - At o,
or

u. - u

i i-1 _ 1
At = g (mp+my)

This is the well-known Crank-Nicholson scheme which is second-order accurate

(23)_

and is unconditionally stable

i2) Third-Order Accurate Method - The following cubic polynomial satisfies
(2) and (3):

2

s(t) = uj_gtTm gt [at (mi + mi_1) - 2(ui - ui_1)]
3 (32)
+ T [3(ui - ui—l) - At (mi+~2mi_])]
As specified, the polynomial is completely determined by the values of the func-
tion and its first derivative at two points i-1 and i; considering (32) on
[ti-l’ ti+]]’ we obtain at ti+1
Ujpq = 5u;_y + 28t m; - bu, + bat m,
(33)
Mgy = 12ui_1 + 56t m._, - 12ui + At m,
Eliminating u;_y» We get
u, -u
TR ]
At = 77 (Gmyy + 8mp -my) (34)
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From (33) other procedures can be developed; e.g., if we eliminate u;, we

obtain

)

(mi_1 + hmi tmg
Equations (34) and (35) are typicai of the Adams-Bashforth methods for time
integration (see Reference 21). It should be noted that both of these pro-
cedures require one more storage location than the Crank-Nicholson method.
The stability of these and other such schemes is discussed in Reference (21).
Unlike the C-N method, (34) and (35) are conditionally stable. The temporal
accuracy of both is 0(At3). The coefficients in the polynomial (32) can al-
50 be evaluated to include the values at three node points (i-1, i, i+1).

The results are unchanged.

3.) Fourth-Order Method - If the cubic polynomial (32) is considered

on [i-1, i] and we evaluate the function and the first derivative at the mid-

point ti_y = (ti - ti)/2, we find that
-1 -

ul T Y 1
At = 3-(m|-1 + hmi-% * ml)
and
u - ul + ui"] _ At (m -m )
i~% 2 3 M i-1

Equations (36) and (37) constitute a two-step procedure, which has recently

(22). Once again the increase in storage

been suggested by Watanabe and Flood
is minimal and only one additional curve fit is required at the half time step.
The method has been shown to be unconditionally stable and of fourth-order

accuracy (see Reference 22). Unfortunately, there are convergence restrictions

assaciated with the required iterative method of solution.

For the simplest iterative procedure, where m_s is treated explicitly, it
2

(35)

(36)

(37)

has been shown in Reference (22) that the solution converges only for At = O(sz).

This is quite restrictive. By utilizing specialized iterative procedures, the

method has been shown to converge for At = 0(Ax). In the present investigation

a novel iterative procedure has been developed from the polynomial interpolation
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formula (32). |If we add and subtract 2(mi + mi_1) to (36) and treat
(m,
The use of this factor is suggested by the following relation, obtained from

(32):

. =(m, + m, 2] explicitly, the procedure also converges for At = 0(Ax).
-3 i i-1 /

Moy = " M - M) (38)

where

The present iterative procedure is equivalent to an explicit treatment of the
second derivatives in (38) and, therefore, has improved convergence and
“stability' properties.

B. Quadrature Methods

An alternative approach to the derivation of these methods is through the

use of quadratures. Let

-
u, = fx, o, vo, 92

represent a general partial differential equation. Integrating over the interval
[ ti-l’ ti]’ we obtain
1
u; T upg = At j( f dr (39)
0

Polynomial interpolation is now used for f.

1) Linear:

f = fi T + fi_1 (1-1)

Equation (39) becomes

At

which is the C-N formula.
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2) Quadratic - f=f, v+ f, | (1-1) + [f, - fi_y - At (ft)i]r (1-1)

where (ft) is evaluated from 3 point extrapolation as:
i

(c) = 3fi - hfi_] + fi_2
' 2At
(39) now becomes
R
X: =gz (5f; + 8f - fi))

which is the Adams-Bashforth formula.

'3} Quadratic:

Therefore,
e = (F) = F - f e
At mfi_1 = (ft)i-l = fi - fi-] + C, where
C'is given by
e Jhrfi
i-3 2 5
with (40), Equation (39) becomes
Ui 7 Y- 1
ar =6 (Fioqg ¥ Af + F)
and Foo+f
S MU Ak Y 1 Ay Y
i-% 2 8 i i-1
Since f, = (ut)i = m, and mf, = (utt)i = M,, Equation (41-a) is exactly the

one given in (38). Also (41-'b) can be written as:

3 . Yt Yio1 At

3¢ Yi-3 ~ 7+ (fp - fi)1 =0
°r ul + Yi-1 At

ul-i = 2 -8 (fl - l—l)
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(41-3) and (42) are the fourth-order expressions given by Watanabe and Flood

and derived earlier.

As model problems we have considered the diffusion equation describing the
impulsive motion of a flat plate (Rayleigh) and the nonlinear Burgers equation
discussed earlier. Transient and large time Sq]utions have been obtained. The

Rayleigh problem is described by the following equations

u, = vu s ’ u = u(t,y)

with boundary conditions

u(t,0) =1, u(t,») =0
and initial condition
e u(O’Y) =0

The exact solution is

Y
2vvt

u(t,y) = erfc

Typical solutions for the Rayleigh problem are presented in Tables 13 through
17. Due to the large gradients found for small times, the higher-order methods
do not lead to a significant improvement in accuracy; in fact, at certain times,
the lower-order solutions are in better agreement with the analytic values. |If
the exact values are used as initial conditions at t = 1.0, the large gradients
are avoided and the results are shown on Tables 14, 15 and 16. For small At, it is
difficult to discern any difference with the various methods. For larger At
values, some improvement can be observed; however, as At is further increased
the higher-order methods exhibit some form of instability. For the third-order
method this is apparently the numerical instability discussed earlier. For
the fourth-order method, the difficulty is associated with the iterative method
of solution. Finally, on Table 17 large time solutions are shown. No signifi-
cant conclusion can be drawn with respect to the advantage of the higher-order
methods. For the Burgers equation similar behavior was found; moreover, there
was no significant reduction in the number of steps required to attain the

steady state. Generally speaking, for the examples considered here, there was
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TABLE 13! RAYLEIGH PROBLEM t =0, At=0.1

3rd CRDER

t y C-N EXACT
02 | »10000E+01 L 10000E+01 L10000E+01
) +10000E+00- JUGUBOE+00 «53552E+00 «52709E400-
,20000E400 L 1465%E+00 «15476£400 «20590E400
«30000E400- «33927E=01 «33234E~01 WS577B0E=CYL:
L40000E+00 «76978E=02 W T2C06E~02 L11412E=01
«50000£+400 0 15759€E=02 v13609E-02 W 15654E=02
4 60000E+00Q e 32505E=03 ¢ C6B03E~03 «14B806L=03
,70000E400- 63459k =04 yUBUOSE=0Y 296707E=05
JBO000E+00 s 12481E-04 s90825E=05 «U4236E~06
L90000E+00 W23711E=05 W 16062t=05 W1US9IHE=0T.
+10000E401 WU45282E=06 +29281E=06 e 36356E=09
G.3 0, «10000E+01 «10000E401 «10000E+01%
* «10000€+00 «581320E400 oD714SE400 +H0558E+00.
«20000E+00 e 27156E+00 e 29UU2E+00 «30170E+00
.+ 30000E+00 +92667E=01 «99UB0E=0Q1 «12134E+00
+U0VO0E+0QO e26355E-01 2 26415E=01 «38867E=01
«D0000£+00 268659 =02 «OUT722E=02 «98231E=02
«60000E+0QO 16473802 «14198E=02 019457 =02
¢ TUOUOE+0QD «38028E-03 e 30Ub63E=03 «30083E=03
«B0000E+0QD WB83861E=-04 +61232E-04 e 36299E-04
e F0000E+0QD. s18100k=04 e12236E~04 «34330E=05
«10000E+01 2 37372E=05 «23418E=05 25745E=06
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TABLE 14. RAYLEIGH PROBLEM t4,=1.0, at=0.4

’ it
[ y Ist ORDER 4th ORDER EXACT
0.1 .0 1.00000E+00 1.00000E+00 1.00000E+00
e 1.00000E~-01 7.86342E-01 7.87405E=-01 7.87406E-01
; 2.00000E-01 5.88706E-01 5.89641E-01 5.89638E-01
‘ 3.00000E-01 4,17469E-01 4,18494E-01 4,18492E~01
; 4,00000E-01 2.79864E~01 2.80714E~01 2.80713E-01
: 5.00000E-01 1.77012E-01 1.77530E-01 1.77530E~01
6.00000E~01 1.05478E~01 1.05645E-01 1.05645E-01
7.00000E~01 5.91578E-~02 5.90573E-02 5.90585E=02
8.00000E~01 3.,12138E-02 3,09706E-02 3,09716E-02
9.,00000E=01 1.54937E~-02 1.52186E-02 1.52192€E=-02 .
1.00000E+00 7.23834E-03 7.00062E-03 7.00069E-03
|
|
04 0 1.00000€+00 1.00000E+00 1.00000E+00
' 1.00000E-01 - 8.09765E-01 8+11071E-01 8,11070E~01
2.00000E-01 6.30337€-01 6.+32589€£-01 6.32585E-01
3.00000E-01 4,70661E-01 4.73294E=-01 4,73290E-01 |
4,00000E-01 3.36556E~-01 3.38983E-01 3.38980E-01
5,00000E=01 2.30208E-01 2.31999€~-01 2.31998E-01
6.00000E~01 1.50519E-01 1.51493E-01 1.51494E~01
7.00000E~01 9,40487E-C2 9.,42623E-02 9'.42643}E-02
8.00000E-01 5,61632E~02 6¢58269E-02 5.58295E-02
9,00000E~01 3.20700E-02 3.14417E~02 3.14439E-02
1.00000E+00 1,75247E-02 1.68261E=02 1.68274E-02
|
0.6 o0 1.00000E+00 1.00000E+00 1.00000E+00

1.00000E~01
2.00000E~-01
3.00000E-01
4,00000E-01
5.00000E=-01
6.00000E~01
7.00000E-01
8.,00000E-01
9.00000E~01
1.00000E+00

8.21629E-01
6.52203E-01
3.68156E~01
2.61207E-01
1.78226E~01
1.16920E-01
7.37519E~02
4447490E-02
2.61333E~-02

8.23064E-01
6454 724E~01
5.02339E~01
3.71097E-01
2.63555E=01
1.79713E-01
1.17523€-01
7.36359E-02
4¢41689E-02
2.53455E-02

8.23063E-01
6.54721E~01
5.02335E-01

3.71094E-01]

2463552E~01
1.79712E-01
1.17525E~01
4441716E~02
2453475E-02
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N

TABLE 15. RAYLEGH PROBLEM t,=1.0, 4t=0.4

Y

Ist ORDER

C~-N

3rd ORDER

4th ORDER

EXACT

t=0.4
«0
1.,00000E-01
2,00000E-01
3,00000E-01
4,00900E-01

15.00000E=-01

6.,00000E-01
7.00000E-01
8.00000E-0Q1
9.,00000E~01
1.00000E+00

t=12

«0
1.00000E-01
2.00000E~01
3.00000E-01
4,00000E-01
5.00000E-01
6.00000E~01
7.00000E-01
8.00000E-01
9.00000E-01

| 1,00000E+00

1.00000E+00
8+.06701E-01
6.24995E-01
4.64329E-01
3,30585E~01
2.25617E-01
1.47779E-01
9.30980€E-02
5.65815E-02
3.330359E-02
1.90706E~-02

1.00000E+00
8.43748E-01
6+93796E~-01
5.55627E-01
4'33302E-01
3.29126E-01
2+43657€E~01
1.75983E-01
1.24163E-01
8.57025E=-02
Se79671E-02

1.00000E+00
8.118186-01

€.33786E-01

44T4488E-01
3.39792E-01
2.32258E-01
1.51275€-01
9.37R03E~02
5,53107E-02

J.10448E-02

l.66016E-02

1.00000E+00

8.491R1E-01

Te03648E-01
SebB145F=~01
4,46431E~01
3.40981E~01
2+52R90E~-01
1.B1954E=~01
8.57619E~-02

5.61360E~02

1.00000E+00
8+10241E-01
6.21453E-01
4 T2488E-01
3.38R33E~01

2432390E-01

1.52066E-01
9.46986E-02
5.600556-02
3.14127E-02
1.67046E-02

1.00000E+00
8.48529E-01

7.02354E=01"

SQSGQQ7E"01
4,45404E-01
3.40286E-01
2.52585E-01
1.82022E-01
1.27267E-01
8.62730E-02
5.66541E-02

1.00000E+00
8.11062E~01
6.32468E-01
4,73384E-01
3.38872E~01
2+32053E~-01
1.51447E-01
9,43083E-02
5.58098E-02
3.14501E-02
1.68168E-02

UNSTABLE

1.00000E+00
8.11070E-01
6.32585E-01
44,73290E~01
3.38980E-01
2.31998E-01
1.51454E~01
9,42643E-02
5.58295E~02
3.14439E-02
1.68274E-02

-1«00000E+00

B.48767E~01

. 7402%917E-01

5.67269E=-01
4,45601E-01
3.40356E-01-

" 2.52559E~-01

1.81926E~01
1.27124E~0)
8.61195E-02
5.65305€~02
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TABLE 16. RAYLEIGH ' PROBLEM t°=l.0, At =0.8
t y . C-N 3rd ORDER EXACT
0.8 .0 1.00000E+0G0 1.00000E+00 . 1.00000E+00 -
‘ 1.00000E-01 B.36116E-01 8.16124£-01 8.33029E-01
2.00000E-01 6.7R382E-01 6.54357E~01 6.73290E-01
3.00000E-01 5¢32510E-01 5.18349F£-01 5.27089E~-01
4,00000E-01 4403260F-G1 - 4,010n81E-01 3.99075E-01
S.00000F-¢1 2+93Q35E~C1 2+.98699E-01 2.91841E-01
C6.0000CE-01 2.05R75E-01 2.12406E-01 2.05903E-01
7,000CCE=-V1 “1e3H84RS5E-01 1e43931E-01 1.40016E=-01
8.00000E-01 . »Be95146E=02 9.30037E-02 S.16903E-02
5,00000E-01" 5.57n05E~-02 S5.74196E£-02 S.77798E-02
1.00000E+00. 3.34h46F=02 3.39737E-02 3.501528-02
2.4 .0 - 1.00000E+00 1.00000E+00 1.00000E+00
© 1.00000E-01 8. 78R4RE-01 8.67418E=01 8478089E~01
2,00000E-01 T.00384E=-C1 7.50677E~01 7.59006E-01
3.00000E~01 6.4714SE-01 beidb011E~01 9.453885—01
4,00000E~01 5.41369E-01 5,44235E~01 "5439498£~-01
5,00000E-01 4,4694TE~0] 4.456526-0] - 4,43103E-01
6.00000E-31 3.58R17E-01 . 3.57136E~01. 3.57386E~01
7.000008=-01 2.83524E-01 2 812R4E~01 2.82934E-01
8.000C0E-01 2.£0252E~01 2.18423E~01 . 2.19T68E-01
9,00020E-01 1.67402E-01 1.67061F=01 1.67421E~-01
1.00000E+00 1.24599E~01 1.25529E~01 1.25047E-01
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TABLE 17. RAYLEIGH PROBLEM at=0.1, t=24.9
y C-N 3rd ORDER EXACT
0. o 10000E+01 1.00000E+00 «10000E+01
«10000E+00_ _«95476E+00 9,54769FE~01 +95480E+00_
"W 20000E+00 ¢ 9096TE400 9,09682F=-01 «9097UE+00
+30000E+00_ _«B6UBOE400 8.64884E-01 2 B86U9TE+00_
+40000E+00 «B82049E+00 8.20516E-01 WB206UE+00
+50000E+00_ o 77668E+00 7.76714E~01 w77686E400
Te60000E+400 «73357E400 7.33609E-01 «73379E400
_e70000E+00_ 69128E+00 6.91326E~01 #69153E+00_
«80000E4+00 «64993E400 6.49983E~01 s 65022E+00
_«90000E+00 «60963E400 6.09686E-01 060995E+00
+10000E+01 +ST04T7F400 5.70536E~01 +5708U4E4Q0




no real advantage of the higher-order techniques. Further study may resolve

some of the difficulties found here.
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VI. RESUME.

Polynémial spline interpolation has been used to develop a variety of
higher-order collocation methods. Only those polynomials resulting in tri-
diagonal, or at worst 3x3 block-tridiagonal, matrix systems have been evalu-
ated. The governing systems are obtained directly in terms of the functional
values and certain derivatives of the functional values at the specified nodal
points. The development is generally given for a nonuniform mesh, for which

a high degree of accuracy is maintained.

Recently for a uniform mesh a so-called Padé, compact, Mehrstellung or
Hermitian finite-difference procedure, which is 3x3 block-tridiagonal, has
been proposed. It is shown that this formulation is a hybrid method result-
ing from two different polynomial splines. However, the Padé approximation
is derived from a five-point discretization formulae and might be difficult
to extend to nonuniform mesh systems. The hybrid spline results apply to
variable meshes. Also, the compact system of equations does not include
certain simple relations between the first and second derivative approxima-
tions that are obtained from the polynomial spline interpolation formula.
These relations are useful for reducing the size of the matrix system and
thereby the computer time; in certain instances, boundary conditions can

more easily be satisfied with these equations.

Hermitian polynomial interpolation has been considered by Peters and it
is shown herein that the compact differencing system is derivable with this
procedure. On the other hand, Peters is able to derive a tridiagonal matrix
system involving only the functional nodal values uj. This would appear to
be a significant improvement over the 3x3 compact system. However, the final

system appears to be inconsistent, with an attendant loss of accuracy.

Finally, from three-point Taylor series expansions and Hermitian discreti-
zation of the functionals and their derivatives at the nodal points, an alter-
nate derivation of the compact differencing scheme is presented. As only three
nodal points are considered here, this procedure is less cumbersome than the
Padé formulation and has been considered for nonuniform meshes and to develop

systems with even higher-order truncation errors. Significantly, all of the
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polynomial spline block-tridiagonal systems can be recovered with this formula-
tion. Moreover, a sixth-order (hybrid polynomial spline) 3x3 block-tridiagonal
scheme has been devised. There does not appear to be any particular advantage
of the polynomial spline formulation over the Hermitian discretization deriva-

tion.

The truncation errors of all the procedures are presented in tabular form,
and results are shown for a variety of viscous flow problems. Of the fourth-

,(7,8)

order methods, spline has the smallest truncation error. From the solu-
tions to the model problems, the increase in accuracy with decrease in trunca-
tion error is apparent. The sixth~order Hermite formulation leads to extraordi-
nary accuracy even with very coarse grids. An important conclusion of the pre-
sent study is that for equal accuracy the spline 4 procedure requires one-
fourth as many points as a finite-difference calculation. This means less com-

puter time and storage.

Finally, polynomial interpolation has been used to develop higher-order
implicit temporal integration schemes, which have previously been developed
by Hermite collocation. The present formulation leads to additional features
of these methods, which are not obtained with the Hermite procedures. For
time-asymptotic (steady state) calculations there does not appear to be any
advantage of these higher~order methods. For transient analyses, there are
“stability" limitations not found with the lower-order techniques, and the
integration is sensitive to small errors in the initial conditions. Therefore,
for the examples considered herein, the advantages associated with higher-

order time integration are minimal.

67



10.

11.

12.

13.

68

REFERENCES

Ahlberg, fi. H., Nilson, E. N. and MWalsh, J. L., The Theory of Splines
and Their Applications, Academic Press, New York (1967).

Graves, R. A., Jr., ""Higher-Order Accurate Partial Implicitization:
An, Unconditionally Stable Fourth-Order Accurate Explicit Mumerical
Technique," NASA TN 8021 (1975).

Orszag, S. A. and lIsraeli, M., '"Numerical Simulation of Viscous In-
compressible Flows,' Annual Review of Fluid Mechanics, Annual Reviews,
Inc., Palo Alto (1974).

Hirsch, R., "Higher-Order Accurate Difference Solutions of Fluid Me-
chanics Problems by a Compact Differencing Technique,' J. Comp. Phys.,
19, 1, pp. 90-109 (1975).

Krauss, E., Hirschel, E. H. and Kordulla, W., '""Fourth-Order ''Mehrstellen''-
Integration for Three Dimensional Turbulent Boundary Layers,' Proc. of
AlAA Computational Fluid Dynamics Conference, Palm Springs, California,
pp. 92-102 (1973).

Peters, N., ''Boundary Layer Calculation by an Hermitian-Finite Dif-
ference Method,'" Fourth International Conference on Numerical Methods
in Fluid Mechanics, Boulder, Colorado (1974).

Rubin, S. G. and Graves, R. A., '"Wiscous Flow Solutions with a Cubic
Spline Approximation,' Computers and Fluid 3, 1, pp. 1-36, (1975).
See also NASA TR R-436 (1975).

Rubin, S. G. and Koshla, P. K., ""Higher-Order Numerical Solutions Using
Cubic Splines,'" Proc. of AIAA Second Computational Fluid Dynamics Con-
ference, Hartford, Conn., pp. 55-66 (1975). See also NASA CR-2653 (1975).

Fyfe, D. J., "The Use of Cubic Splines in the Solution of Two-Point
Boundary Value Problems,' Compt. J. 12, pp. 188-192 (1969).

Albasiny, E. L. and Hoskins, W. D., ''Increased Accuracy Cubic Spline
Solutions to Two-Point Boundary Value Problems,' J. Inst. Math. Applic.,
9, pp. L47-55 (1972).

Papamichael, N. and Whiteman, J. R., "A Cubic Spline Technique for the
One Dimensional Heat Conduction Equations,” J. Inst. Math. Applic., 9,
pp. 111-113 (1973).

Rosenhead, L., ''Laminar Boundary Layers,'" Oxford University Press,
London (1963).

Emmons, H. W. and Leigh, D., "Tabulation of the Blasius Function with
Blowing and Suction,' Cum. Pap. Aero. Res. Coun. Lond. No. 157 (1953).



REFERENCES (Continued)

14, Catherall, D., Stewartscn, K. and Williams, P. G., "Viscous Flow Past
a Flat Plate with Uniform Injection,' Proc. Roy. Soc., Series A. Vol.
284, pp. 370-396 (1965).

15. Staff Langley Research Center: ''Numerical Studies of Incompressible
Viscous Flow in a Driven Cavity," NASA SP-378 (1975).

16. Rubin, S§. G. and Lin, Tony C., “A Numerical Method for Three Dimensional
Viscous Flow: Application to the Hypersonic Leading Edge,' J. Comput.
Phys., Vol. 9, No. 2, pp. 339-364 (1972).

17.  Rubin, S. G., "A Predictor-Corrector Method for Three Coordinate Viscous
Flows,'" Proc. of the Third International Conference on Numerical Methods
in Fluid Mech., Springer-Verlag, pp. 146-153 (1972).

18. Buneman, 0., "A Compact Non-lterative Possion Solver,'" Report 294, Stan-
ford University Institute for Plasma Research, Stanford, California

(1969).

19. Burstein, S. Z., '""Higher-Order Accurate Difference Methods in Hydro-
dynamics. Nonlinear Partial Differential Equations,' W. F. Ames,
Editor, Academic Press, New York, pp. 279-290 (1967).

20. Abarbanel, G., Gottlieb, D. and Turkel, E., ''Difference Schemes with
Fourth~Order Accuracy for Hyperbolic Equations,'' SIAM J., Appl. Math.,
Vol. 29, pp. 329-351 (1975).

23. Ceschino, F. and Kutzmann, J., '"Numerical Solution of Initial Value
Problems,' Prentice-Hall, Inc., Englewood Cliffs, NJ (1966).

22. Watanabe, D. S. and Flood, J. R., '"An Implicit Fourth-Order Difference
Method for Viscous Flows,' Coord. Sci. Labs., University of 11linois,
Report R-572 (1972).

23. Richtmyer, R. D. and Morton, K. W., ''Difference Methods for Initial-
Value Problems,' tnterscience Publishers, New York, {(1967).

NASA-Langley, 1876 CR-2735 69



